WINTER-19 EXAMINATION

 Subject Name: DESIGN OF STEEL \& RCC STRUCTURES Subject Code22502

Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values
6) may vary and there may be some difference in the candidate's answers and model answer
7) In case of some questions credit may be given by judgement on part of examiner of relevant answer
8) For programming language papers, credit may be given to any other program based on equivalent concept.

QN	Qtempt any FIVE of the following	Marking scheme	$\mathbf{1 0} \mathbf{M}$	
Q1	a)	Enlist the components and corresponding functions of steel water tank The components of a steel water tank are:- The side wall plates Bottom wall plates, bracings in case of rectangular tanks Elevated steel tank consists of, Ring beam, Staircase The primary functions of a steel water tank is storage of water	$\mathbf{1}$	$\mathbf{2}$
b)	Define bolt value and pitch Pitch : it's the centre to centre distance between the bolts in the direction of force. Bolt value: it's the least value of the shear strength and bearing strength of a bolt $\mathbf{C)}$ State the values of partial safety factors for material strength of concrete and steel for limit state of collapse The values of partial factor of safety for steel and concrete. 1) Partial factor of safety for steel = 1.15 2) Partial factor of safety for concrete $=1.5$	$\mathbf{1}$	$\mathbf{2}$	

	d)	Write the expression for minimum shear reinforcement giving the meaning of the terms involved $S v=\frac{0.87 f y A s v}{0.4 b}$ Sv - Spacing of stirrups fy - Characteristic strength of steel, Asv - Area of Stirrup bar, b - width of the beam	1	2
	e)	Define the aspect ratio in case of slab and state its importance. The ratio of $\mathrm{Ly} / \mathrm{Lx}$ is know as aspect ratio of the slab, where Ly is longer side and Lx is the shorter side of the slab. The importance of this is that, if the ratio of $\mathrm{Ly} / \mathrm{Lx}$ is greater than 2 , then the should be designed as a one way slab and if the ratio is less than 2 it should be designed as a two way slab.	1	2
	f)	Write the two IS specifications for longitudinal reinforcement of an axially loaded short column IS specifications for longitudinal reinforcement of an axially loaded short column: i) Minimum diameter of bar in column $=12 \mathrm{~mm}$ ii) Minimum number of bars in square/rectangle column $=4$ Nos iii) Minimum number of bars in circular column $=6$ Nos iv) Cover of the column $\subseteq 40 \mathrm{~mm}$ v) Minimum and maximum steelin column vi) Max \% of steel $=6 \%$ of gross cross-sectional area of column vii) Min \% of steel $=0.8 \%$ of gross cross-sectional area of column	1 M any2	2
	g)	Enlist two loads to be considered as per IS 875 - 1987 while designing steel structure Loads to be considered as per IS 875-1987 while designing steel structures 1.DEAD LOAD ----IS 875-PART-1 -1987 2. LIVE LOAD -- IS 875-PART-2 -1987 3. WIND LOAD --- IS 875-PART-3-1987 4. SNOW LOAD --- IS 875-PART-4-1987	1M any2	2
Q2		Attempt Any THREE of the following		12 M
	a)	Explain the limit state of serviceability applicable to steel structures. The acceptable limit for safety and serviceability of the structure before failure occurs is called as Limit state. To assure the serviceability of the	2	4 M

	structure throughout its lifetime, it is related to the satisfactory performance of the structure at working load. The following limit state of serviceability is considered: 1)Deflection and deformation 2) Durability 3) crack due to fatigue 4) Fire	2	
b)	In steel constructions bolts of grade 4.6 are generally used. What do you mean by grade 4.6? In bolts of grade $4-6$, The number 4 is $1 / 100^{\text {Th }}$ of nominal ultimate stress of bolt fub $=4 \times 100=400 \mathrm{~N} / \mathrm{mm}^{2}$ and yield stress fyb is $0.6 \times 400=240 \mathrm{~N} / \mathrm{mm}^{2}$	2 2	4 M
c)	Define over reinforced sections and state two reasons due to which they are avoided. When $\mathrm{xu}>\mathrm{xmax}$ or $\mathrm{pt}>\mathrm{pt}$ lim The section is called a over reinforced section, It is avoided due to the following reasons: 1) In over reinforced section, percentage of steel is more than critical percentage, Due to this, the concrete crushes and reaches its ultimate stress before steel reaches its yield point. In this case, the beam will fail initially due to overstress in the concrete, suddenly without giving any warning by way of large deformations and cracks as it does in the case of under reinforced section. So, there is a huge loss of life and property. 2)The moment of resistance of the section does not increase more than that of balanced section even if the steel is increased as compared to balanced section	2 2	4 M
d)	Diameter of steel bar is $\mathbf{2 0} \mathbf{~ m m}$. Use Fe415 steel and design bond stress is 1.2 MPa. For plain bars in tension. Find development length in tension and compression. $\begin{aligned} d= & 20 \mathrm{~mm} \\ & f y=415 \mathrm{~N} / \mathrm{mm}^{2} \\ & \tau \mathrm{bd}=1.2 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Development Length is given by $\mathrm{Ld}=\left(\frac{0.87 f y \emptyset)}{4 \square \mathrm{bd}}\right.$ For deformed bars, $\quad \tau b d=1.2 * 1.6$ In tension $\begin{aligned} \mathrm{Ld} & =\left(\frac{0.87 * 415 * 20)}{4 * 1.6 * 1.2}\right. \\ & =940.23 \mathrm{~mm} \end{aligned}$	1 1 1	4 M

		In compression $\begin{aligned} \tau \mathrm{bd} & =1.6 * 1.25 * \tau b d \\ \mathrm{Ld} & =\left(\frac{0.87 * 415 * 20)}{4 * 1.6 * 1.25 * 1.2}\right. \\ & =752.19 \mathrm{~mm} \end{aligned}$	1	
Q3		Attempt any TWO of the following		12M
	a)	Design the lap joint for plates $100 \times 10 \mathrm{~mm}$ and $80 \times 10 \mathrm{~mm}$ thick connected to transmit 120 kN factored load using single row of 18 mm dia bolts of 4.6 grade and plates of 415 grades. For bolts of grade 4.6 fub $=400 \mathrm{~N} / \mathrm{mm}^{2}$ For Fe 415 grade steel $\mathrm{fu}=415$ (d) Dia of bolts $=18 \mathrm{~mm}$ Dia of bolt hole $=18+2=20 \mathrm{~mm}$. Gross Area of bolt $=\frac{\pi}{4} x 18^{2}=254.47 \mathrm{~mm}^{2}$ Net area of bolts $=0.78 *$ Gross Area $\begin{aligned} & =0.78 \times 254.47 \\ & =198.49 \mathrm{~mm}^{2} \end{aligned}$ Single shear strength of bolt $\mathrm{Vdsb}=\mathrm{Vnsb}$ Ym_{m} $\mathrm{Vnsb}=\frac{f u b}{\sqrt{3}}(\mathrm{nn} . \mathrm{Anb}+\mathrm{ns}$ Asb $)$ $=\frac{400}{\sqrt{3}}(1 \times 198.49+0)$ $=45838.33 \mathrm{~N}$ $\mathrm{Vdsb}=\frac{45838.33}{1.25}=36670.67 \mathrm{~N}$ $\mathrm{Vdsb}=36.67 \mathrm{kN}$ Strength of bolts in bearing $\mathrm{Vdpb}=\frac{V n s b}{\gamma_{\mathrm{m} 1}}$ Vnpb $=2.5 \mathrm{~kb}$.d.t.fu Kb is least of the below $\left[\frac{e}{3 d_{o}}, \frac{P}{3 d_{o}}-0.25, \frac{f u b}{f u}, 1.0\right]$	1	6M

$$
\begin{aligned}
& \text { Assuming e }=1.5 \mathrm{do} \\
& =1.5 \times 20=30 \mathrm{~mm} \\
& P=2.5 \mathrm{~d}=45 \mathrm{~mm} \\
& \frac{30}{3 \times 20}=0.5,\left(\frac{45}{3 \times 20}-0.25\right)=0.5, \frac{400}{415}=0.964,1.0 \\
& \text { The least of the above is } 0.5 \text { hence } \mathrm{kb} \text { is } 0.5 \\
& \text { Vnpb }=2.5 \times 0.5 \times 18 \times 10 \times 415 \\
& =93375 \mathrm{~N} \\
& V d p b=\frac{V n p b}{1.25}=\frac{93375}{1.25} \quad=74700 \mathrm{~N} \quad 74.70 \mathrm{kN}
\end{aligned}
$$

Bolt valve is the least of the above Vdsb \& Vdpb
$=36.67 \mathrm{kN}$
No. of bolts $=\frac{120}{36.67}=3.27 \approx 4 \mathrm{No}^{\prime} \mathrm{s}$

Arrange the bolts as shown below in one row.

30 ₹ 45 ₹ 45 ₹ 45 ₹ 45
Alternatively
Single shear strength of bolt
Vdsb = Vnsb
Ym1
Vnsb $=\frac{f u b}{\sqrt{3}}(\mathrm{nn} . \mathrm{Anb}+\mathrm{ns}$ Asb $)$
$=\frac{400}{\sqrt{3}}(1 \times 198.49+0)$
$=45838.33 \mathrm{~N}$
$\mathrm{Vdsb}=\frac{45838.33}{1.25}=36670.67 \mathrm{~N}$
Vdsb $=36.67 \mathrm{kN}$
Therefore no of bolts: $\frac{120}{36.67}=3.27 \approx 4 \mathrm{No}^{\prime} \mathrm{s}$

Equating this to tensile strength of plate per pitch length
$\mathrm{Tdn}=(0.9 * f u(p-d o) * t) / \gamma_{\mathrm{m} 1}=\frac{0.9 \times 415(\mathrm{p}-20) \times 10}{1.25}=120000$
$\mathbf{p}=60.16 \mathrm{~mm} \sim 65 \mathrm{~mm}$ check if greater than minimum pitch which is $2.5 \times 18=45$
mm hence ok
Consider e as 35 mm
Strength of bolts in bearing
$\mathrm{Vdpb}=\frac{V n s b}{\gamma_{\mathrm{m} 1}}$

Vnpb $=2.5 \mathrm{~kb}$.d.t.fu
Kb is least of the below
$\left[\frac{e}{3 d_{o}}, \frac{P}{3 d_{o}}-0.25, \frac{f u b}{f u}, 1.0\right]$

Hence the value of kb is 0.583

Vnpb $=2.5 \times 0.583 \times 18 \times 10 \times 415$
$=108875.25 \mathrm{~N}$
$V d p b=\frac{V n p b}{1.25}=\frac{108875.25}{1.25}$
$=87100.2 \mathrm{~N}$
$=87.1 \mathrm{kN}$

Therefore, the bolt value is 36.6 kN
$\frac{35}{3 \times 20}=0.583,\left(\frac{65}{3 \times 20}-0.25\right)=0.833, \frac{400}{415}=0.964,1.0$

b) Design a suitable fillet welded connection for ISA $80 \times 50 \times 8$ with its longer leg connected to gusset plate of thickness 8 mm . The angle is subjected to factored load of $\mathbf{2 7 0 k N}$. Cxx $=\mathbf{2 7 . 5 m m}$. Assume weld applied to all 3 edges and shop weld. Take $\mathrm{fy}=\mathbf{2 5 0} \mathrm{MPa} \& \mathrm{fu}=\mathbf{4 1 0} \mathrm{MPa}$.

Given $\mathrm{Pu}=270 \mathrm{kN}$
Minimum size of weld $=3 \mathrm{~mm}$
Maximum size of weld $=\frac{3}{4}(8)=6 \mathrm{~mm}$
Provide a weld size of 4 mm .

Note: - Students may assume any other size of weld between $\mathbf{3 \mathrm { mm }}$ to $\mathbf{6 m m}$. The answer will vary examiner needs to check as per the size of weld considered by the student.
\# Design stress of shop weld.
$\mathrm{fwd}=\frac{f u}{\left(\sqrt{3)} * \gamma_{m 1}\right.}=189.37 \mathrm{~N} / \mathrm{mm}^{2}$
rm1 $=1.25$
Throat thickness $(\mathrm{t})=0.7 \times 4=2.8 \mathrm{~mm}$.
\# Weld length required

Pdw $=f w d{ }^{*} L^{*} t$
$270 \times 10^{3}=189.37$ * L * 2.8
$\mathrm{L}=509.21 \mathrm{~mm} . \sim 510 \mathrm{~mm}$
Alternatively
\#Strength of weld per mm
Pdw $=f w d{ }^{*} 1$ * t

Pq $\times 189.37 \times 1 \times 2.8$
$\mathrm{Pq}=530.24 \mathrm{~N}$

Length of weld required $=\frac{270 * 10^{3}}{530.24}$
$=509.21 \approx 510 \mathrm{~mm}$

	As per the requirement the welding is done on 3 sides $\begin{aligned} & X 1+X 2+80=510 \\ & X 1+X 2=430 \end{aligned}$ Taking moment @ bottom weld $\begin{aligned} & X 1(530.24) * 80+80 \times 530.24 \times 40=270 \times 10^{3} \times 27.5 \\ & X 1=135.04 \approx 140 \mathrm{~mm} \\ & X 2=294.96 \approx 295 \mathrm{~mm} \end{aligned}$	1	
c)	A RC section $250 \mathrm{~mm} \times 450 \mathrm{~mm}$ effective in reinforced with $4 \mathrm{no}-16 \mathrm{~mm}$ dia bars of Fe 415 on tension side only. If M20 concrete in used, calculate ultimate moment of resistance the beam can offer. Size of beam $=250 \times 450$ Given Ast $=4\left[\frac{\pi}{4} x 16^{2}\right]=804.25 \mathrm{~mm}^{2}$ Check it the beam is under reinforced $\begin{aligned} & \mathrm{Xu}=\frac{0.87 \text { fyAst }}{0.36 f c k b} \\ & \mathrm{Xu}=\frac{0.87 \times 415 \times 804.25}{0.36 \times 20 \times 250}=161.32 \mathrm{~mm} \end{aligned}$ Check Xu max $\text { Xumax }=0.48 \mathrm{~d}=0.48 \times 450=216 \mathrm{~mm}$ Since Xu < Xumax section is under reinforced $\begin{aligned} \mathrm{MR} & =0.87 \text { fy Ast }(\mathrm{d}-0.42 \mathrm{Xu}) \\ & =0.87 \times 415 \times 804.25(450-0.42 \times 161.32) \\ & =110994360 \mathrm{~N}-\mathrm{mm} \\ M R & =110.99 \mathrm{kN}-\mathrm{m} \end{aligned}$	1 1 1 1 1 1	6M

Q4		Attempt any TWO of the following		12M
	a)	Calculate depth and area of steel at mid span of a simply supported beam over a clear span 6 m . The beam is carrying all-inclusive load $20 \mathrm{kN} / \mathrm{M}$. Assume 300 mm bearings. Use M20 \& Fe500 Assume $b=\frac{1}{2} d$ Beam load $=20 \mathrm{kN} / \mathrm{m}$ Spam of beam $=6 \mathrm{~m}$. $\mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{fy}=500 \mathrm{~N} / \mathrm{mm}^{2}$ Effective span $\mathrm{Le}=6+\frac{0.3}{2}+\frac{0.3}{2}=6.3 m$ BM for simply supported beam $=\frac{\mathrm{wl}^{2}}{8}=\frac{20 * 6.3^{2}}{8}=99.23 \mathrm{kNM}$ Factored $\mathrm{BM}=1.5 \times 99.23=148.84 \mathrm{kNM}$ Equate Factored BM to Mulim to calculate b \& d. Mulim $=0.133 * f c k *{ }^{*} d^{2}$ As $\mathrm{b}=\frac{1}{2} d$ Calculate effective depth d and width b Mulim $=0.133 \mathrm{fck} \frac{d^{3}}{2}$ $148.84 \times 10^{6}=0.133 \times 20 \frac{d^{3}}{2}=481.89 \mathrm{~mm} \approx 490 \mathrm{~mm}$. take effective cover $=40$, therefore Overall Depth $D=d+d^{1}=490+40=530 \mathrm{~mm}$. As $\mathrm{b}=\frac{d}{2} \quad \mathrm{~b}=\frac{490}{2}=245 \mathrm{~mm}$. Area of steel Ast $=\frac{0.5 x f c k}{f y}\left[1-\sqrt{\left.1-\frac{4.6 \text { Mulim }^{2}}{f c k b d^{2}}\right]}\right.$ bd	1	

	$=\frac{0.5 \times 20}{500}\left[1-\sqrt{\left.1-\frac{4.6 \times 148.84 \times 10^{6}}{20 \times 245 \times 490^{2}}\right]} 245 \times 490=848.6 \mathrm{~mm}^{2}\right.$ No. of bars to be provided if dia of bars is 20 mm . Area of one bar $=\frac{\pi}{4} \times 20^{2}=314.16 \mathrm{~mm}^{2}$ No. of bars $=\frac{\text { Ast }}{\text { Area of one bar }}=\frac{848.6}{314.16}=2.7 \approx 3 \mathrm{No}^{\prime} \mathrm{s}$ Alternatively, Ast can also be determined as $\mathrm{Pt}, \lim =\frac{\text { Ast }}{b d} * 100$ Pt, lim for $\mathrm{Fe} 500=0.038 * 20=0.76 \%$ $\text { Ast }=\frac{0.76 * b x * d}{100}=\frac{0.76 * 245 * 490}{100}=912.38 \mathrm{~mm}^{2}$ No. of bars to be provided if dia of bars is 20 mm , Area of one bar $=\frac{\pi}{4} \times 20^{2}=314.16 \mathrm{~mm}^{2}$ $\frac{912.38}{314.16}=2.9 \approx 3 \mathrm{No}^{\prime} \mathrm{s}$	1	
b)	A simply supported beam of span 5 m carries a working udl of intensity 40 kN / m. Size of beam $350 \times 500 \mathrm{~mm}$ (effective). It is reinforced with 4 bars 20 mm diameter. Design 8 mm diameter 2 legged stirrups if one $\mathbf{2 0 ~ m m}$ diameter bar is bent up. Take $\tau c=0.5^{2} \mathrm{~N} / \mathrm{mm}$ $\tau_{\text {cmax }}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$ Use M20 grade \& Fe415 steel. Span $=5 \mathrm{~mm} \quad \mathrm{w}=40 \mathrm{kN} / \mathrm{m}$ Size of beam $=350 \times 500 \mathrm{~mm}$ effective ح $c=0.5{ }^{2} \mathrm{~N} / \mathrm{mm}$ $\tau_{\mathrm{cmax}}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$ \#Calculation of shear force Factored load $=1.5 \times 40=60 \mathrm{kN} / \mathrm{m}$	1	6M

Factored shear force $(\mathrm{Vu})=\frac{w d * l}{2}=\frac{60 * 5}{2}=150 \mathrm{kN}$
\# Calculate Shear stress ح v
$乙 \mathrm{v}=\frac{V u}{b d}=\frac{150 \times 10^{3}}{350 \times 500}=0.857 \mathrm{~N} / \mathrm{mm}^{2} \quad<\tau \mathrm{c}$ max hence OK
$\tau \mathrm{c}$ value is 0.5
Check if shear reinforcement is required
As $\tau_{v}>\tau_{c}$ Shear reinforcement is required
Calculation of Balance shear
Vus $=V u-\tau c \times b d$

$$
=150 \times 10^{3}-0.5 \times 350 \times 500=62500 \mathrm{~N} .
$$

Area of bent up bar $=\left[\frac{\pi}{4} \times 20^{2}\right] \times 1=314.16 \mathrm{~mm}^{2}$
Assuming 45° bend
\# Shear resisted by Bent-up bar
Vusb $=$ shear resisted by bent-up bar
$=0.87 \times$ fy \times Asb $\times \operatorname{Sin} 45$
$=0.87 \times 415 \times 314.16 \times \operatorname{Sin} 45=80205.33 \mathrm{~N}$
Vusb $>\frac{V u}{2}$ hence OK.
\# Shear Resisted by vertical shear stirrups will be
Vusv $=\frac{V u}{2}=31.25 \mathrm{kN}$
For two legged vertical stirrups Asv $=\frac{2 * \pi 8^{2}}{4}=100.53 \mathrm{~mm}^{2}$
$\mathrm{S}=\underline{0.87 * f y * A s v * d}$
Vusv
$=\underline{0.87 \times 415 \times 100.53 \times 500}=580.74 \mathrm{~mm}$
31.25×103
Maximum spacing is given as 300 mm

$$
0.75 \mathrm{~d}=0.75 \times 500=375 \mathrm{~mm}
$$

580.74 mm

Least value of the above is 8 mm stirrups @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Alternatively
Check for minimum stirrups if capable of taking the shear force resisted by
$\operatorname{Vusv}(\mathrm{min})=0.4 \times \mathrm{b} \times \mathrm{D}=70 \mathrm{kN}>\operatorname{Vusv}$
Minimum stirrups are sufficient
Asv $=\frac{2 * \pi * 8^{2}}{4}=100.53 \mathrm{~mm}^{2}$

		$S v=\frac{0.87 * f y * A s v}{0.4 * b}=\frac{0.87 * 415 * 100.53}{0.4 * 350}=259.25 \approx 250 \mathrm{~mm}$ Provide 8 mm dia stirrups @ 250 mm c/c	1	
	c)	State the various forms of shear reinforcements. i) Vertical Shear Stirrups. $\text { Vus }=\frac{0.87 * f y * A s v * d}{S v}$ 1) Vus - balance shear 2) Fy - Grade of steel/characteristic strength of stirrup 3) Asv - Area of shear stirrups with in a distance Sv 4) d-effective depth of beam 5) Sv - spacing of shear stirrups along the length of members ii) Inclined Shear stirrups $\text { Vus }=\frac{0.87 * f y * A s v * d}{S v}(\operatorname{Sin} \alpha+\operatorname{Cos} \alpha)$ 1) α-angle between the inclined stirrup and the axis of member not less than 45° iii) Bent up bars. Vus = 0.87fy Asb.Sin α 1) Asb - area of bentup bar 2) Vus - balance shear 3) Fy - Grade of steel/Characteristic strength of stirrup 4) α - angle between the inclined stirrup and the axis of member not less than 45°	2	6M
Q5		Attempt any TWO of the following		12M
		Design a one way slab with the following data, span $=3 \mathrm{~m}$, live load $=4$ $\mathrm{kN} / \mathrm{m} 2$ floor finish $=1 \mathbf{k N} / \mathrm{m} 2$. Concrete M20 andFe415 steel. Take M.F. as 1.4. (No check required). Design a one way $\begin{aligned} & \mathrm{Lx}=3 \mathrm{~m} \\ & \mathrm{LL}=4 \mathrm{KN} / \mathrm{m}^{2} \\ & \mathrm{FF}=1 \mathrm{KN} / \mathrm{m}^{2} \\ & \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{fy}=415 \mathrm{~N} / \mathrm{mm}^{2}, \\ & \mathrm{MF}=1.4 \\ & \text { Slab Thickness } \mathrm{d}=\frac{\text { Span }}{20 \times \mathrm{MF}} \end{aligned}$		6M

$$
=\frac{3000}{20 \times 1.4}=107.14 \underline{\mathrm{~mm}}
$$

Assuming $10 \mathrm{~mm} \varnothing$ main bars and nominal cover of 20 mm
[Note: some student may assume 15 mm cover]
D = d + cover + $\varnothing / 2$
$=107.14+20+10 / 2$
$=132.14 \mathrm{~mm}$
Take D $=135 \mathrm{~mm}$
davail = D - cover - \varnothing /2
135-20-10/2
$\mathrm{d}=110 \mathrm{~mm}$
Effective span
$l e=I+d=3000+110=3110 \mathrm{~mm}$
$\mathrm{le}=3.11 \mathrm{~m}$

\#Calculation of Loads

$\mathrm{DI}=0.135 \times 25=3.375 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{LL}=4 \mathrm{KN} / \mathrm{m}^{2}$
FF $=1 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{W}=8.375 \mathrm{KN} \mathrm{m}{ }^{2}$
The load is to be considered for one meter $8.375^{*} 1=8.375$
Factored Load $(w d)=8.375 \times 1.5=12.563 \mathrm{KN} / \mathrm{m}$

\# Factored max BM

$\mathrm{Md}=\mathrm{wd} \times \mathrm{le}^{2} / 8$
$\mathrm{Md}=\frac{12.563 \times 3.11^{2}}{8}=15.19 \mathrm{kN}-\mathrm{m}$

\#Check for required depth

$d=\operatorname{SQRT}\left(15.19 \times 10^{6} / 0.138 \times 20 \times 1000\right)$
$d=74.19 \mathrm{~mm}$
davail $=110 \mathrm{~mm}>$ dreqd - : ok
Provide D $=135 \mathrm{~mm}$
davail 110mm
\#Area of main steel and its spacing
Ast $=0.5 \mathrm{fck} / \mathrm{fy}\left[1-\sqrt{1-\frac{4.6 M d}{f c k b d^{2}}}\right] x b d$
$=0.5 \times 20 / 415\left[1-\sqrt{1-\frac{4.6 * 15.19 * 10^{6}}{20 * 1000 x * 110^{2}}}\right] * 1000 * 110=415.18 \mathrm{~mm}^{2}$

	Spacing of main reinforcement Spacing of main reinforcement Assuming 10 mm bar. Assuming 8 mm bar $A \emptyset=\prod \times 10^{2} / 4=78.5 \mathrm{~mm} 2$ $A^{\phi}=\prod \times 8^{2} / 4=50.26 \mathrm{~mm}^{2}$ Spacing $=1000 \times A \varnothing /$ Ast $=$ Spacing $=1000 A \varnothing /$ Ast $=1000 \times 78.54415 .18$ $=1000 \times 50.26 / 415.18$ $=189.17 \mathrm{~mm}$ $=121.06 \mathrm{~mm}$ $=180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ $=120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ Check for spacing $=3 \mathrm{~d}$ or 300 mm Check for spacing $=3 \mathrm{~d}$ or 300 mm $=330$ or 300 mm $=330$ or 300 mm Provide 10 mm bar at $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ Provide 8 mm bar at $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ \#Area and spacing of distribution steel $\begin{aligned} & \text { Asd }=0.12 / 100 \times b D \\ & =0.12 / 100 \times 1000 \times 135=162 \mathrm{~mm} 2 \end{aligned}$ Spacing 8 mm bars $\mathrm{A}^{\phi}=50.26 \mathrm{~mm}^{2}$ $S d=1000 \times A \emptyset / \text { Astd }$ $1000 \times 50.26 / 162=310 \mathrm{~mm}$ Check for spacing minimum of 1) $5 \mathrm{~d}=5 \times 110=550 \mathrm{~mm}$ 2) 450 mm 3) 310 mm Provide distribution steel of 8 mm at $310 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	1	
b)	Design a reinforced concrete slab panel for $6.3 \times 4.5 \mathrm{~m}$ simply supported on all the four sides. It has to carry a live load of $4 \mathrm{kN} / \mathrm{m} 2$ in addition to its dead load. Use M25concrete Fe 415 steel. (No checks) Use $\alpha x=0.062$ \& $\alpha y=$ 0.060 . $\begin{aligned} & \mathrm{Ly}=6.3 \mathrm{~mm} \\ & \mathrm{Lx}=4.5 \mathrm{~m} \\ & \mathrm{Ly} / \mathrm{Lx}=6.3 / 4.5=1.4<2 \end{aligned}$: Two way slab Note: student may assume different MF, to be checked as per the values taken Assume MF = 1.4 $\begin{aligned} & \mathrm{d}=\mathrm{Span} / 20 \times 1.4 \\ & =160.71 \mathrm{~mm} \end{aligned}$ Assume clear over of 20 mm Assume 10 mm diameter of bar $\begin{aligned} & D=d+\text { cover }+\Phi / 2 \\ & =160.71+20+10 / 2=185.71=190 \mathrm{~mm} \\ & \text { davail } 190-20-10 / 2=165 \mathrm{~mm} \end{aligned}$ \#Calculation of effective span		6M

Lex $=4500+165=4665 \mathrm{~mm}$

\#Calculation of Loads

Self weight of slab $0.19 \times 25=4.75 \mathrm{KN} / \mathrm{m}^{2}$
Live Load $=4 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{w}=8.75 \mathrm{KN} / \mathrm{m}^{2}$
Factored Load $(w d)=8.75 \times 1.5$
$=13.125 \mathrm{kN} / \mathrm{m}^{2}$
Consider the loads for 1 m strip hence the loads will be $13.125 \mathrm{kN} / \mathrm{m}$
\#Bending Moment Calculation
$M x=\alpha x^{*} w d^{*} L^{2}{ }^{2}$
$=0.062$ * 131.25 * $4.6652=17.71 \mathrm{KNm}$
My=ay *wd *Lex ${ }^{2}$
0.060 * $13.125 * 4.6652=17.14 \mathrm{KNm}$

\#Check for Depth

Effective depth of slab
dreqd $=\sqrt{\frac{M}{q f c k b}}=\sqrt{\frac{17.71 * 106}{0.138 * 25 * 1000}}=71.65 \mathrm{~mm}$
davail $=165 \mathrm{~mm}>$ dreqd , Hence OK

Area \& spacing of stee

Astx $\left.=0.5 \mathrm{fck} / \mathrm{fy} \sqrt[{[1}-]{1-\frac{4.6 \times 17,71 \times 10^{6}}{25 \times 1000 \times 165^{2}}}\right] 1000 \times 165=306.91 \mathrm{~mm}^{2}$
Ast $\min =0.12 / 100 \times 1000 \times 190=228 \mathrm{~mm}^{2}$
Astx > Astmin OK
Spacing using 8 mm bars $\left(A \emptyset=50.26 \mathrm{~mm}^{2}\right)$
$\mathrm{Sx}=\mathrm{A} \emptyset \mathrm{b} / \mathrm{Ast} \mathrm{x}=50.26 \times 1000 / 306.91=163.76 \mathrm{~mm}=160 \mathrm{~mm}$

Check for spacing

S should be min of
$3 \mathrm{~d}=3 \times 165=495 \mathrm{~mm}, 300 \mathrm{~mm}, \mathrm{~S}=160 \mathrm{~mm}$

Provide $8 \mathrm{~mm}^{\Phi}$ bars or $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Asty $=0.5 \mathrm{fck} / \mathrm{fy}\left[1-\sqrt{1-\frac{4.6 M y}{f c k b d^{2}}}\right] b d$
$=0.5 \times 25 / 415\left[1-\sqrt{1-\frac{4.6 \times 17.14 \times 10^{6}}{25 \times 1000 \times 165^{2}}}\right] \times 1000 \times 165=296.71 \mathrm{~mm}^{2}$
Ast $\min =228 \mathrm{~mm}^{2}$

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Asty > Astmain : OK \\
Alternatively
\[
\begin{aligned}
\& \mathrm{D}=165-8=157 \\
\& \text { Asty }=0.5 \mathrm{fck} / \mathrm{fy}\left[1-\sqrt{\left.1-\frac{4.6 M d}{f c k b d^{2}}\right]} b d\right. \\
\& =0.5 \times 25 / 415\left[1-\sqrt{1-\frac{4.6 * 17.14 * 10^{6}}{25 * 1000 * 157^{2}}}\right] * 1000 * 157=312.87 \mathrm{~mm}^{2}
\end{aligned}
\] \\
Check for spacing
\[
\mathrm{Sx}=\mathrm{A} \emptyset \mathrm{~b} / \text { Asty }=50.26 \times 1000 / 296.71=169.39 \mathrm{~mm}=165 \mathrm{~mm}
\] \\
Spacing should be min of \(3 \mathrm{~d}=495 \mathrm{~mm}, 300,160 \mathrm{~min}\)
\[
S=160 \mathrm{~mm}
\] \\
Provide 8 mm at \(165 \mathrm{~mm} \mathrm{c} / \mathrm{c}\)
\end{tabular} \& 1 \& \\
\hline c) \& \begin{tabular}{l}
Design a cantilever chajja with following data: Span \(=1.50 \mathrm{~m}\), width \(=2.0 \mathrm{~m}\), 1.1. \(=1.5 \mathrm{kN} / \mathrm{m2}\). Floor finish \(=0.5 \mathrm{kN} / \mathrm{m} 2\), support lintel \(=230 \times 300 \mathrm{~mm}\) concrete M20, Fe 415 steel, sketch the \(\mathrm{c} / \mathrm{s}\) of chajja. Showing steel details. \(\mathrm{Lx}=1.5 \mathrm{~m}\) \\
\(\mathrm{LL}=1.5 \mathrm{KN} / \mathrm{m}^{2}\) \\
\(\mathrm{FF}=05 \mathrm{KN} / \mathrm{m}^{2}\) \\
\(\mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2}\) \\
\(\mathrm{fy}=415 \mathrm{~N} / \mathrm{mm}^{2}\) \\
\(\mathrm{d}=\) span /(\(7 \times \mathrm{MF}\)) \\
Assuming MF = 1.4 \\
\# Estimation of depth
\[
\mathrm{d}=1500 /(7 \times 1.4)=153.06 \mathrm{~mm}
\] \\
Assuming 20 mm cover and 10 mm bars
\[
\begin{aligned}
\& D=153.06+20+10 / 2 \\
\& =178.06=180 \mathrm{~mm} \\
\& \text { davail }=180-20-10 / 2=155 \mathrm{~mm} \\
\& \text { Effective Span } \\
\& \mathrm{le}=\mathrm{I}+\mathrm{d} / 2 \\
\& =1500+155 / 2=1577.5 \mathrm{~mm}=1.58 \mathrm{~m}
\end{aligned}
\] \\
\#Load Calculation \& BM
\[
\begin{aligned}
\& \mathrm{DL}=1 \times 1 \times 0.19 \times 25=4.75 \mathrm{KN} / \mathrm{m}^{2} \\
\& \mathrm{LL}=1.5 \mathrm{KN} / \mathrm{m}^{2} \\
\& \mathrm{FF}=0.5 \mathrm{KN} / \mathrm{m}^{2}
\end{aligned}
\] \\
Total Load \(w=6.75 \mathrm{KN} / \mathrm{m}^{2}\) \\
Factored Load \(w d=6.75 \times 1.5=10.13 \mathrm{KN} / \mathrm{m}^{2}\) \\
\#Factored BM
\[
M d=\frac{w d \times l e^{2}}{2}
\]
\end{tabular} \& 1

1 \& 6M

\hline
\end{tabular}

$=\left(10.13 \times 1.58^{2}\right) / 2=12.64 \mathrm{KN}-\mathrm{m}$
\# Required Depth
$0.138 \mathrm{fckbd}^{2}=\mathrm{Md}$
dreq $=\sqrt{\frac{12.64 * 10^{6}}{0.138 * 20 * 1000}}=67.67 \mathrm{~mm}$
davial $=155 \mathrm{~mm}>$ dreqd :-OK

Area and spacing of main steel

Ast $=0.5 \mathrm{fck} / \mathrm{fy}\left[1-\sqrt{1-\frac{4.36 \mathrm{Mu}}{q f c k b d^{2}}}\right] b d$
$=0.5 \times 20 / 415\left[1-\sqrt{1-\frac{4.6 \times 12.64 \times 10^{6}}{20 \times 1000 \times 155^{2}}}\right] \times 1000 \times 155=233.26 \mathrm{~mm}^{2}$
Astmin $=0.12 / 100 \times b \times D$

$$
=0.12 / 100 \times 1000 \times 190
$$

Ast > Astmin :- OK
Spacing using 8 mm bars ($\triangle \varnothing=50.26 \mathrm{~mm}^{2}$)
$\mathrm{Sx}=\mathrm{A} \emptyset \mathrm{b} / \mathrm{Ast}=1000 \times 50.26 / 233.26=215.47 \mathrm{~mm} 2=215 \mathrm{~mm}$
Check for spacing
S is minimum of
$3 \mathrm{~d}=3 \times 155=465 \mathrm{~mm}, 300 \mathrm{~mm}, \mathrm{~S}=215 \mathrm{~mm}$
Hence provide 8 mm at $215 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

\#Area of spacing of distribution steel

Astd $=0.12 / 100 \times b D$

$$
=0.12 / 100 \times 1000 \times 190=228 \mathrm{~mm}^{2}
$$

Using 8 mm bar ($(\mathrm{A} \varnothing=50.26 \mathrm{~mm} 2)$
Spacing $=1000 \times$ A $\varnothing /$ Astd
$=1000 \times 50.26 / 228$
$=220 \mathrm{~mm}$
Spacing Should be minimum of
$5 \mathrm{~d}=5 \times 155=775 \mathrm{~mm}, 450 \mathrm{~mm}, 220 \mathrm{~mm}$
Provide 8 mm at $220 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

$$
=228 \mathrm{~mm}^{2}
$$

$=220.438 \mathrm{~mm}$

			1	
Q6		Attempt any TWO of the following		12M
	a)	Design a square column to carry an axial/oad of 1500 kN . The unsupported length of the column is 3.5 m . Use M20 concrete \& 1\% Fe500 steel for longitudinal reinforcement. UseMS bar for lateral ties. Apply the check for minimum eccentricity. $P=1500 \mathrm{kN}$ Factored load $=1500 \times 1.5=2250 \mathrm{kN}$ Lo $=3.5 \mathrm{~m}$. $\mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$ $f y=500 \mathrm{~N} / \mathrm{mm}^{2}$ As Asc is 1% of gross area, Asc $=0.01 \mathrm{Ag}$ $\begin{aligned} & \mathrm{Ac}=\mathrm{Ag}-\mathrm{Asc} \\ & \quad \mathrm{Ag}-0.01 \mathrm{Ag}=0.99 \mathrm{Ag} \\ & \mathrm{Pu}=0.4 \mathrm{fck} . \mathrm{Ac}+0.67 \mathrm{fy} \mathrm{Asc} \\ & 2250 \times 10^{3}=0.4 \times 20 \times 0.99 \mathrm{Ag}+0.67 \times 500 \times 0.01 \mathrm{Ag} \\ & \mathrm{Ag}=199645.08 \mathrm{~mm}^{2} \end{aligned}$ \#Size of Footing $\begin{aligned} D & =\sqrt{A g} \\ & =446.82 \sim=450 \mathrm{~mm} \end{aligned}$	1	

	\#Check D should not be less than $0.12 \mathrm{~L}=0.12 \times 3500$ $=420 \mathrm{~mm} \text { - ok }$ D should not be less than 400 mm - ok \#Check for minimum eccentrically $\begin{aligned} \mathrm{e}_{\min }= & \frac{L}{500}+\frac{D}{30} \\ & =\frac{3500}{500}+\frac{450}{30} \\ & =22 \mathrm{~mm} \\ \mathrm{e}_{\max }= & 0.05 \times \mathrm{D} \\ & =0.05 \times 450 \\ & =22.5 \mathrm{~mm} \end{aligned}$ $\mathrm{e}_{\text {min }}<\mathrm{e}_{\text {max }}-\mathrm{ok}$ \#Main steel Calculation $\begin{aligned} \text { Asc } & =0.01 \mathrm{Ag} \\ & =0.01\left(450^{2}\right) \\ & =2025 \mathrm{~mm}^{2} \end{aligned}$ Provide 8 bars of 20 mm diameter \#Transverse Steel a) Diameter $\varnothing \mathrm{T}=1 / 4 \times \varnothing \mathrm{L}$ or 6 mm whichever is greater $=(1 / 4) 20$ or 6 mm $=5 \mathrm{~mm}$ or 6 mm Use 6 mm diameter mild steel reinforcement b) Spacing_ Min of the following 1) $D=450 \mathrm{~mm}$ 2) $16 \times \emptyset \mathrm{L}=16 \times 20=320 \mathrm{~mm}$ 3) 300 mm Use $6 \mathrm{~mm} \phi$ links at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	1	
b)	Design a circular column to carry an axial load of 1500 kN. using MS Lateral ties. Use M25 concrete and Fe415 steel. The unsupported length of column is 3.75 m . $\begin{aligned} & P=1500 \mathrm{KN} \\ & \text { Factored load }=1500 \times 1.5=2250 \mathrm{KN} \\ & \mathrm{fck}=25 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { fy }=415 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { Lo }=3.75 \mathrm{~m} \end{aligned}$ Assume 1 \% of Ag. Note: Students may assume different \% of steel, to be checked based on student assumption.	1	6M

```
Asc \(=0.01 \mathrm{Ag}\)
\(A c=A g-A S C\)
    \(=0.99 \mathrm{Ag}\)
\(\mathrm{Pu}=0.4 \mathrm{fck} . \mathrm{Ac}+0.67 \mathrm{fy}\) ASC
\(2250 \times 103=0.4 \times 25 \times 0.99 \mathrm{Ag}+0.67 \times 415 \times 0.01 \mathrm{Ag}\)
\(\mathrm{Ag}=177437.8 \mathrm{~mm}^{2}\)
\#Diameter of column
\(D=\sqrt{\frac{4 x 177437.8}{3.14}}\)
\(=475.43 \mathrm{~mm} \mathrm{D}=480 \mathrm{~mm}\)
\(D\) should not be less than \(0.12 \times \mathrm{L}\)
    \(0.12 \times 3750=450 \mathrm{~mm}\)-ok
D should not be less than 400 mm -ok
D \(=480 \mathrm{~mm}\)
\#Check for min eccentricity
\(\mathrm{e}_{\text {min }}=\mathrm{Lo} / 500+\mathrm{D} / 30\)
\(=3750 / 500+480 / 30\)
\(=23.5 \mathrm{~mm}\)
\(\mathrm{e}_{\max }=0.05 \times \mathrm{D}\)
\(=0.05 \times 480=24 \mathrm{~mm}\)
emin < emax :- OK
\#Check for slenderness ratio
L/D \(=3750 / 480=7.8<12\) :- short column
Asc \(=0.01 \times\left(\pi \times 480^{2} / 4\right)\)
\(=1808.64 \mathrm{~mm}^{2}\)
Assume 20 mm dia of bar
Provide 6 bars of 20 mm
Transverse steel
Diameter \(=\phi t=1 / 4 \times \phi\) max or 6 mm whichever is greater
a) \(=1 / 4 \times 20\) or 6 mm 5 mm or 6 mm \(\phi \mathrm{t}=6 \mathrm{~mm}\)
a) Spacing
Min of the following
1) \(D=480 \mathrm{~mm}\)
2) \(16 \emptyset_{\mathrm{L}}=16 \times 20=320 \mathrm{~mm}\)
3) 300 mm
Use 6 mm 中 links at \(300 \mathrm{~mm} \mathrm{c} / \mathrm{c}\)
```


$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{rl}\text { Using 20mm bar }\left(\mathrm{A} \phi=314 \mathrm{~mm}^{2}\right) \\ \text { Spacing }=1000 \mathrm{~A} \mathrm{\phi} / \mathrm{Ast} \\ =1000 \times 314.8 / 2377.58 \\ =132.40 \mathrm{~mm} \\ =120 \mathrm{~mm}\end{array} & 1\end{array}\right]$

