

Subject Code 22502

WINTER-19 EXAMINATION Subject Name: DESIGN OF STEEL & RCC STRUCTURES <u>Model Answer</u>

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values
- 6) may vary and there may be some difference in the candidate's answers and model answer
- 7) In case of some questions credit may be given by judgement on part of examiner of relevant answer
- 8) For programming language papers, credit may be given to any other program based on equivalent concept.

QN		Attempt any FIVE of the following	Marking scheme	10 M
Q1	a)	Enlist the components and corresponding functions of steel water tank		2
		The components of a steel water tank are:-	1	
		The side wall plates		
		Bottom wall plates, bracings in case of rectangular tanks		
		Elevated steel tank consists of, Ring beam, Staircase		
		The primary functions of a steel water tank is storage of water		
	b)	Define bolt value and pitch	1	2
		Pitch : it's the centre to centre distance between the bolts in the direction of		
		force.		
		Bolt value: it's the least value of the shear strength and bearing strength of a	1	
		bolt		
	C)	State the values of partial safety factors for material strength of concrete and		2
		steel for limit state of collapse		
		The values of partial factor of safety for steel and concrete.		
		1) Partial factor of safety for steel = 1.15	1	
		2) Partial factor of safety for concrete = 1.5		

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Page 1 | 22

	d)	Write the expression for minimum shear reinforcement giving the meaning of	1	2
		the terms involved		
		$Sv = \frac{0.87 f y A s v}{0.4 h}$		
		$SV = \frac{1}{0.4b}$		
		Sv – Spacing of stirrups	1	
		fy – Characteristic strength of steel,		
		Asv – Area of Stirrup bar,		
		b – width of the beam		
	e)	Define the aspect ratio in case of slab and state its importance.		2
		The ratio of Ly/Lx is know as aspect ratio of the slab, where Ly is longer side and	1	
		Lx is the shorter side of the slab.		
		The importance of this is that, if the ratio of Ly/Lx is greater than 2, then the		
		should be designed as a one way slab and if the ratio is less than 2 it should be	1	
		designed as a two way slab.	•	
	f)	Write the two IS specifications for longitudinal reinforcement of an axially	1 M any2	2
		loaded short column		
		IS specifications for longitudinal reinforcement of an axially		
		loaded short column:		
		i) Minimum diameter of bar in column = 12 mm		
		ii) Minimum number of bars in square/rectangle column = 4 Nos		
		iii) Minimum number of bars in circular column = 6 Nos		
		iv) Cover of the column = 40 mm		
		v) Minimum and maximum steel in column		
		vi) Max % of steel = 6 % of gross cross-sectional area of column		
		vii) Min % of steel = 0.8 % of gross cross-sectional area of column		
	g)	Enlist two loads to be considered as per IS 875 -1987 while designing steel	1M any2	2
		structure		
		Loads to be considered as per IS 875 -1987 while designing steel structures		
		1.DEAD LOADIS 875-PART-1 -1987		
		2. LIVE LOAD IS 875-PART-2 -1987		
		3. WIND LOAD IS 875-PART-3 -1987		
		4. SNOW LOAD IS 875-PART-4 -1987		
22		Attempt Any THREE of the following		12 M
	a)	Explain the limit state of serviceability applicable to steel structures.		4 M
		The acceptable limit for safety and serviceability of the structure before		
		failure occurs is called as Limit state. To assure the serviceability of the		
			2	

b)	structure throughout its lifetime, it is related to the satisfactory performance of the structure at working load. The following limit state of serviceability is considered: 1)Deflection and deformation 2) Durability 3) crack due to fatigue 4) Fire In steel constructions bolts of grade 4.6 are generally used. What do you mean by grade 4.6? In bolts of grade 4-6, The number 4 is 1/100 Th of nominal ultimate stress of bolt fub = 4 x 100 = 400 N/mm ² and yield stress fyb is 0.6 x 400 = 240N/mm ²	2 2 2	4 M
c)	 Define over reinforced sections and state two reasons due to which they are avoided. When xu > xmax or pt > pt lim The section is called a over reinforced section, It is avoided due to the following reasons: In over reinforced section, percentage of steel is more than critical percentage, Due to this, the concrete crushes and reaches its ultimate stress before steel reaches its yield point. In this case, the beam will fail initially due to overstress in the concrete, suddenly without giving any warning by way of large deformations and cracks as it does in the case of under reinforced section. So, there is a huge loss of life and property. 	2	4 M
d)	that of balanced section even if the steel is increased as compared to balanced sectionDiameter of steel bar is 20 mm. Use Fe415 steel and design bond stress is 1.2MPa. For plain bars in tension. Find development length in tension and compression.d= 20mm fy= 415N/mm² c bd= 1.2N/mm²Development Length is given byLd= $\left(\frac{0.87 f y \emptyset}{4 \ \Box bd} \right)$ For deformed bars, cbd = 1.2*1.6In tension	1	4 M
	Ld = $\left(\frac{0.87*415*20}{4*1.6*1.2}\right)$ = 940.23 mm	1	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Page 3 | 22

		In compression		
		cbd = 1.6*1.25* cbd	_	
		$Ld = (\frac{0.87 * 415 * 20)}{1000}$	1	
		4*1.6*1.25*1.2		
		= 752.19 mm		
Q3		Attempt any TWO of the following		12M
	a)	Design the lap joint for plates 100x10mm and 80x10mm thick connected to		
		transmit 120kN factored load using single row of 18mm dia bolts of 4.6 grade		6M
		and plates of 415 grades.		
		For bolts of grade 4.6		
		fub = 400 N/mm ²		
		For Fe 415 grade steel fu = 415		
		(d) Dia of bolts = 18mm	1	
		Dia of bolt hole = 18+2 = 20mm.		
		Gross Area of bolt = $\frac{\pi}{4} x 18^2 = 254.47 \text{ mm}^2$		
		Net area of bolts = 0.78*Gross Area		
		=0.78x254.47		
		= 198.49mm ²		
		Single shear strength of bolt	1	
		Vdsb = Vnsb		
		Ym1		
		fub		
		Vnsb = $\frac{\sqrt{33}}{\sqrt{3}}$ (nn.Anb + ns Asb)		
		$=\frac{400}{\sqrt{3}}(1\times198.49+0)$		
		= 45838.33N		
		$Vdsb = \frac{45838.33}{1.25} = 36670.67N$		
		Vdsb = 36.67 kN		
		Strength of bolts in bearing	_	
		$Vdpb = \frac{Vnsb}{\gamma_{m1}}$	1	
		γ_{m1}		
		Vnpb = 2.5kb.d.t.fu		
		Kb is least of the below		
		$\left[\frac{e}{3d_o}, \frac{P}{3d_o} - 0.25, \frac{fub}{fu}, 1.0\right]$		

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR P a g e 5 | 22 Contact - 9136008228

b)	Design a suitable fillet welded connection for ISA 80x50x8 with its longer leg		6M
	connected to gusset plate of thickness 8mm. The angle is subjected to		
	factored load of 270kN. Cxx = 27.5mm. Assume weld applied to all 3 edges		
	and shop weld. Take fy = 250 MPa & fu = 410 MPa.		
	Given Pu = 270 kN		
	Minimum size of weld = 3 mm	1	
	Maximum size of weld = $\frac{3}{4}(8) = 6mm$		
	Provide a weld size of 4 mm.		
	Note: - Students may assume any other size of weld between 3 mm to 6 mm.		
	The answer will vary examiner needs to check as per the size of weld		
	considered by the student.		
	# Design stress of shop weld.	1	
	$fwd = \frac{fu}{(\sqrt{3})*\gamma_{m1}} = 189.37 \text{ N/mm}^2$		
	xm1 = 1.25		
	Throat thickness (t) = $0.7 \times 4 = 2.8 \text{ mm}$.		
	# Weld length required	1	
	Pdw = fwd * L * t		
	270 x 10 ³ = 189.37 * L * 2.8	1	
	L = 509.21 mm. ~510mm		
	Alternatively		
	#Strength of weld per mm		
	Pdw = fwd * 1 * t	or	
		or	
	Pq x 189.37 x 1 x 2.8	1	
	Pq = 530.24 N		
	270*10 ³		
	Length of weld required = $\frac{270*10^{\circ}}{530.24}$		
	530.24 = 509.21 \approx 510 mm		

	As per the requirement the welding is done on 3 sides		
	X1 + X2 + 80 = 510		
	X1 + X2 = 430	1	
	ISA 8 Cmm × 50 mm × 8 mm		
	Taking moment @ bottom weld X1(530.24)*80+80x530.24x40=270x10 ³ x27.5 X1 = 135.04 \approx 140 mm X2 = 294.96 \approx 295 mm	1	
c)	A RC section 250mm x 450mm effective in reinforced with 4 no – 16 mm dia		6M
	bars of Fe 415 on tension side only. If M20 concrete in used, calculate		
	ultimate moment of resistance the beam can offer.		
	Size of beam = 250 x 450	1	
	Given Ast = $4[\frac{\pi}{4}x16^2]$ = 804.25 mm ²	•	
	Check it the beam is under reinforced		
	0.87 fyAst	1	
	$Xu = \frac{1}{0.36 f c k b}$		
		4	
	$Xu = \frac{0.87x415x804.25}{0.36x20x250} = 161.32 \text{ mm}$	1	
	$Xu = \frac{1}{0.36 \times 20 \times 250} = 161.32 \text{ mm}$		
	Check Xu max	1	
	Xumax = 0.48d = 0.48x450 = 216mm	•	
	Since Xu < Xumax section is under reinforced		
			1
	MR = 0.87 fy Ast (d - 0.42Xu)		
	MR = 0.87 fy Ast (d – 0.42Xu) = 0.87x 415 x 804.25 (450 – 0.42 x 161.32)		
		1	
	= 0.87x 415 x 804.25 (450 – 0.42 x 161.32)	1	

4	Attempt any TWO of the following		12N
a)	Calculate depth and area of steel at mid span of a simply supported beam		
	over a clear span 6m. The beam is carrying all-inclusive load 20 kN/M.		
	Assume 300mm bearings. Use M20 & Fe500 Assume b = $\frac{1}{2}d$		
	Beam load = 20 kN/m		
	Spam of beam = 6m.		
	fck = 20 N/mm ²		
	fy = 500 N/mm ²		
	Effective span		
	Le = $6 + \frac{0.3}{2} + \frac{0.3}{2} = 6.3m$.	1	
	BM for simply supported beam = $\frac{wl^2}{8} = \frac{20*6.3^2}{8} = 99.23kNM$		
	Factored BM = 1.5x99.23 = 148.84 kNM	1	
	Equate Factored BM to Mulim to calculate b & d.		
	Mulim = 0.133*fck*b*d ²		
	As $b = \frac{1}{2}d$		
	Calculate effective depth d and width b	1	
	Mulim = 0.133 fck $\frac{d^3}{2}$		
	$148.84 \times 10^6 = 0.133 \times 20 \frac{d^3}{2} = 481.89 \text{mm} \approx 490 \text{ mm}.$		
	take effective cover = 40 , therefore Overall Depth D = $d+d^1 = 490+40 = 530$ mm.	1	
	As $b = \frac{d}{2}$ $b = \frac{490}{2} = 245$ mm.		
	Area of steel		
	Ast = $\frac{0.5xfck}{fy} \left[1 - \sqrt{1 - \frac{4.6Mulim}{fckbd^2}}\right]$ bd		

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR P a g e 9 | 22 Contact - 9136008228

	$=\frac{0.5x20}{500}\left[1-\sqrt{1-\frac{4.6x148.84x10^{6}}{20x245x490^{2}}}\right]$ 245x490 = 848.6mm ²	1	
	No. of bars to be provided if dia of bars is 20mm.		
	Area of one bar = $\frac{\pi}{4} x 20^2$ = 314.16 mm ²		
	No. of bars = $\frac{Ast}{Area \ of \ one \ bar} = \frac{848.6}{314.16} = 2.7 \approx 3 \text{ No's}$	1	
	Alternatively,	0-	
	Ast can also be determined as	Or	
	$Pt, \lim = \frac{Ast}{bd} * 100$	1	
	Pt,lim for Fe500 = 0.038*20 = 0.76%		
	Ast = $\frac{0.76*bx*d}{100} = \frac{0.76*245*490}{100} = 912.38$ mm ²		
	No. of bars to be provided if dia of bars is 20mm,		
	Area of one bar = $\frac{\pi}{4} x 20^2$ = 314.16 mm ²		
	$\frac{912.38}{314.16} = 2.9 \approx 3 \text{ No's.}$	1	
b)	A simply supported beam of span 5m carries a working udl of intensity 40		6M
	kN/m. Size of beam 350 x 500mm (effective). It is reinforced with 4 bars 20mm		
	diameter. Design 8mm diameter 2 legged stirrups if one 20 mm diameter bar is bent up. Take $\tau_{c} = 0.5^{2}$ N/mm $\tau_{cmax} = 2.8$ N/mm ² Use M20		
	is bent up. Take $c_{c} = 0.5^{2}$ N/mm $c_{cmax} = 2.8$ N/mm ² Use M20 grade & Fe415 steel.		
	Span = 5mm $w = 40$ kN/m		
	Size of beam = 350 x 500 mm effective		
	$z_c = 0.5$ ² N/mm		
	$z_{\text{cmax}=2.8}$ N/mm ²		
	#Calculation of shear force		
	Factored load = $1.5x40 = 60 \text{ kN/m}$		

Factored shear force $(Vu) = \frac{wd \cdot l}{2} = \frac{60 \cdot 5}{2} = 150kN$ # Calculate Shear stress z_v $z_v = \frac{Vu}{bd} = \frac{150x10^3}{330x500} = 0.857N/mm^2$ < $z_{c max hence OK}$ $z_c value is 0.5$ Check if shear reinforcement is required As $z_{v > z_c}$ Shear reinforcement is required Calculation of Balance shear VUS = Vu - $z_{c \times bd}$ $= 150x10^3 \cdot 0.5x350x500 = 62500 N.$ Area of bent up bar = $[\frac{\pi}{4}x20^2] \times 1 = 314.16mm^2$ Assuming 45° bend # Shear resisted by Bent-up bar Vusb = shear resisted by bent-up bar $= 0.87 \times fy \times Asb \times Sin45 = 80205.33 N$ Vusb > $\frac{Vu}{2}$ hence OK. # Shear Resisted by vertical shear stirrups will be Vusv = $\frac{Vu}{2} = 31.25 kN$ For two legged vertical stirrups Asv = $2x\pi 8^2$ = 100.53 mm ² S = $0.87 \times fy \times Asp \times d$ Vusv $= \frac{0.87 \times f_1 \times Asp \times d}{Vusv} = \frac{580.74 \text{ mm}}{31.25x103}$ Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c Alternatively	1
$z v = \frac{v_u}{hd} = \frac{150 \times 10^3}{350 \times 500} = 0.857 \text{N/mm}^2 < z \text{ c max hence OK}$ $z \text{ c value is 0.5}$ Check if shear reinforcement is required As $z v > z \in$ Shear reinforcement is required Calculation of Balance shear Vus = Vu - $z \text{ c xbd}$ $= 150 \times 10^3 - 0.5 \times 350 \times 500 = 62500 \text{ N.}$ Area of bent up bar = $[\frac{\pi}{4} \times 20^2] \times 1 = 314.16 \text{ mm}^2$ Assuming 45° bend # Shear resisted by Bent-up bar Vusb = shear resisted by bent-up bar $= 0.87 \times 19 \times 314.16 \times 5in45 = 80205.33 \text{ N}$ Vusb > $\frac{v_u}{2}$ hence OK. # Shear Resisted by vertical shear stirrups will be Vusv = $\frac{v_u}{2} = 31.25 \text{ kN}$ For two legged vertical stirrups Asv = $2 \times \pi 8^2$ S = $0.87 \times 19 \times 450 \times 300 \text{ mm}^2$ S = $0.87 \times 19 \times 450 \times 40$ Vusv $= \frac{0.87 \times 19 \times 450 \times 40}{31.25 \times 103}$ Maximum spacing is given as 300 mm 0.75d = 0.75 \times 500 = 375 \text{ mm}^2 Least value of the above is 8 mm stirrups @ 300 mm c/c	1
$\begin{bmatrix} c \text{ value is 0.5} \\ \text{Check if shear reinforcement is required} \\ \text{As } c v > c \text{ shear reinforcement is required} \\ \text{Calculation of Balance shear} \\ \text{Vus} = \text{Vu} - c \text{ cxbd} \\ = 150 \text{x} 10^3 \text{-} 0.5 \text{x} 350 \text{x} 500 = 62500 \text{ N.} \\ \text{Area of bent up bar} = [\frac{\pi}{4} \text{x} 20^2] \text{ x 1} = 314.16 \text{ mm}^2 \\ \text{Assuming } 45^0 \text{ bend} \\ \text{# Shear resisted by Bent-up bar} \\ \text{Vusb} = \text{shear resisted by Bent-up bar} \\ \text{vusb} = \text{shear resisted by bent-up bar} \\ = 0.87 \text{ x fy x Asb x Sin45} \\ = 0.87 \text{ x 415 x 314.16 x Sin45} = 80205.33 \text{ N} \\ \text{Vusb} > \frac{Vu}{2} \text{ hence OK.} \\ \text{# Shear Resisted by vertical shear stirrups will be} \\ \text{Vusv} = \frac{Vu}{2} = 31.25 \text{ kN} \\ \text{For two legged vertical stirrups Asv} = \frac{2 \times \pi 8^2}{4} = 100.53 \text{ mm}^2 \\ \text{S} = \frac{0.87 \times fy \times Asv \times d}{Vusv} \\ = \frac{0.87 \times 15 \times 100.53 \times 500}{31.25 \times 103} \\ \text{Maximum spacing is given as 300 mm} \\ 0.75 \text{ d} = 0.75 \text{ x500} = 375 \text{ mm} \\ 580.74 \text{ mm} \\ \text{Least value of the above is 8 mm stirrups @ 300 mm c/c} \\ \end{bmatrix}$	1
Check if shear reinforcement is required As $z_{V>2} z_{c}$ Shear reinforcement is required Calculation of Balance shear Vus = Vu - z_{cxbd} = 150x10 ³ -0.5x350x500 = 62500 N. Area of bent up bar = $[\frac{\pi}{4}x20^{2}] \times 1 = 314.16$ mm ² Assuming 45° bend # Shear resisted by Bent-up bar Vusb = shear resisted by bent-up bar = 0.87 x fy x Asb x Sin45 = 0.87 x 415 x 314.16 x Sin45 = 80205.33 N Vusb > $\frac{Vu}{2}$ hence OK. # Shear Resisted by vertical shear stirrups will be Vusv = $\frac{Vu}{2} = 31.25 kN$ For two legged vertical stirrups Asv = $\frac{2\pi\pi8^{2}}{4} = 100.53 \text{ mm}^{2}$ S = $\frac{0.87 \times fy \times Asv \times d}{Vusv}$ = $\frac{0.87 \times 415 \times 100.53 \times 500}{532500} = 580.74 \text{ mm}}$ 31.25×103 Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	I
As $z_{V>>z_c}$ Shear reinforcement is required Calculation of Balance shear Vus = Vu - z_{cxbd} = 150x10 ³ -0.5x350x500 = 62500 N. Area of bent up bar = $[\frac{\pi}{4}x20^2] \times 1 = 314.16$ mm ² Assuming 45° bend # Shear resisted by Bent-up bar Vusb = shear resisted by bent-up bar = 0.87 x fy x Asb x Sin45 = 0.87 x 415 x 314.16 x Sin45 = 80205.33 N Vusb > $\frac{Vu}{2}$ hence OK. # Shear Resisted by vertical shear stirrups will be Vusv = $\frac{Vu}{2} = 31.25 kN$ For two legged vertical stirrups Asv = $\frac{2\pi\pi8^2}{4} = 100.53 \text{ mm}^2$ S = $\frac{0.87 \times fy \times Asv \times d}{Vusv}$ = $\frac{0.87 \times 415 \times 100.53 \times 500}{5300} = 580.74 \text{ mm}}$ 31.25×103 Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	1
Calculation of Balance shear1 $Vus = Vu - C cxbd$ $= 150x10^3 - 0.5x350x500 = 62500 N.Area of bent up bar = [\frac{\pi}{4}x20^2] \times 1 = 314.16 \text{ mm}^2Assuming 45° bend# Shear resisted by Bent-up bar1Vusb = shear resisted by bent-up bar= 0.87 \times fy \times Asb \times Sin45= 0.87 \times 415 \times 314.16 \times Sin45 = 80205.33 \text{ N}1Vusb > \frac{Vu}{2} hence OK.# Shear Resisted by vertical shear stirrups will beVusv = \frac{Vu}{2} = 31.25 \text{ kN}1For two legged vertical stirrups Asv = \frac{2 \times \pi 8^2}{4}Vusv= 0.87 \times 415 \times 100.53 \times 500S = 0.87 \times 415 \times 100.53 \times 500S = 0.87 \times 415 \times 100.53 \times 500S = 580.74 \text{ mm}31.25 \times 1031Maximum spacing is given as 300 mm0.75d = 0.75 \times 500 = 375 \text{ mm}580.74 \text{ mm}1Least value of the above is 8 mm stirrups @ 300 mm c/c1$	I
$= 150 \times 10^{3} - 0.5 \times 350 \times 500 = 62500 \text{ N.}$ Area of bent up bar = $\left[\frac{\pi}{4} \times 20^{2}\right] \times 1 = 314.16 \text{ mm}^{2}$ Assuming 45^{0} bend # Shear resisted by Bent-up bar Vusb = shear resisted by bent-up bar $= 0.87 \times 415 \times 314.16 \times 5in45 = 80205.33 \text{ N}$ Vusb > $\frac{Vu}{2}$ hence OK. # Shear Resisted by vertical shear stirrups will be Vusv = $\frac{Vu}{2} = 31.25 \text{ kN}$ For two legged vertical stirrups Asv = $\frac{2 \times \pi 8^{2}}{4} = 100.53 \text{ mm}^{2}$ S = $0.87 \times 415 \times 100.53 \times 500 = 580.74 \text{ mm}$ 31.25×103 Maximum spacing is given as 300 mm $0.75d = 0.75 \times 500 = 375 \text{ mm}$ 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
Area of bent up bar = $[\frac{\pi}{4}x20^2] \times 1 = 314.16$ mm ² Assuming 45° bend # Shear resisted by Bent-up bar Vusb = shear resisted by bent-up bar = 0.87 x fy x Asb x Sin45 = 0.87 x 415 x 314.16 x Sin45 = 80205.33 N Vusb > $\frac{Vu}{2}$ hence OK. # Shear Resisted by vertical shear stirrups will be Vusv = $\frac{Vu}{2} = 31.25 kN$ For two legged vertical stirrups Asv = $\frac{2*\pi k^2}{4}$ = 100.53 mm ² S = $\frac{0.87 * fy * Asv * d}{Vusv}$ = $\frac{0.87x415x100.53x500}{31.25x103}$ = 580.74 mm 31.25x103 Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
Assuming 45° bend # Shear resisted by Bent-up bar Vusb = shear resisted by bent-up bar = $0.87 \times 4y \times Asb \times Sin45$ = $0.87 \times 415 \times 314.16 \times Sin45 = 80205.33 \text{ N}$ Vusb > $\frac{Vu}{2}$ hence OK. # Shear Resisted by vertical shear stirrups will be Vusv = $\frac{Vu}{2} = 31.25 \text{ kN}$ For two legged vertical stirrups Asv = $\frac{2*\pi 8^2}{4}$ 100.53 mm ² S = $\frac{0.87 \times fy \times Asv \times d}{Vusv}$ = $\frac{0.87 \times 415 \times 100.53 \times 500}{31.25 \times 100}$ = 580.74 mm 31.25×103 Maximum spacing is given as 300 mm 0.75d = $0.75 \times 500 = 375 \text{ mm}$ 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
# Shear resisted by Bent-up bar1Vusb = shear resisted by bent-up bar= $0.87 \times fy \times Asb \times Sin45$ = $0.87 \times 415 \times 314.16 \times Sin45 = 80205.33 N$ Vusb > $\frac{Vu}{2}$ hence OK.# Shear Resisted by vertical shear stirrups will be1Vusv = $\frac{Vu}{2} = 31.25 kN$ For two legged vertical stirrups $Asv = \frac{2*\pi 8^2}{4} = 100.53 mm^2$ 100.53 mm^2S = $0.87 \times fy \times Asv \times d$ Vusv= $0.87 \times fy \times Asv \times d$ 1Vusv= $0.87 \times fy \times Asv \times d$ 11Vusv= $0.87 \times fy \times Asv \times d$ 11Usv= $0.75 \times 500 = 375 mm$ 1Start Usv= $0.75 \times 500 = 375 mm$ 1Usv= $0.87 \times fy \times f$	
Vusb = shear resisted by bent-up bar = $0.87 \times fy \times Asb \times Sin45$ = $0.87 \times 415 \times 314.16 \times Sin45 = 80205.33 \text{ N}$ Vusb > $\frac{Vu}{2}$ hence OK. # Shear Resisted by vertical shear stirrups will be Vusv = $\frac{Vu}{2} = 31.25 \text{ kN}$ For two legged vertical stirrups Asv = $\frac{2*\pi 8^2}{4} = 100.53 \text{ mm}^2$ S = $\frac{0.87 \times fy \times Asv \times d}{Vusv}$ = $\frac{0.87 \times 415 \times 100.53 \times 500}{31.25 \times 100} = 580.74 \text{ mm}$ 31.25×103 Maximum spacing is given as 300 mm $0.75d = 0.75 \times 500 = 375 \text{ mm}$ 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
$= 0.87 \times fy \times Asb \times Sin45$ $= 0.87 \times 415 \times 314.16 \times Sin45 = 80205.33 \text{ N}$ $Vusb > \frac{Vu}{2} \text{ hence OK.}$ # Shear Resisted by vertical shear stirrups will be $Vusv = \frac{Vu}{2} = 31.25 \text{ kN}$ For two legged vertical stirrups Asv = $\frac{2*\pi 8^2}{4} = 100.53 \text{ mm}^2$ $S = \frac{0.87 \times fy \times Asv \times d}{Vusv}$ $= \frac{0.87 \times 415 \times 100.53 \times 500}{31.25 \times 103} = 580.74 \text{ mm}$ 31.25×103 Maximum spacing is given as 300 mm $0.75d = 0.75 \times 500 = 375 \text{ mm}$ 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	1
$= 0.87 \times 415 \times 314.16 \times \text{Sin45} = 80205.33 \text{ N}$ $Vusb > \frac{Vu}{2} \text{ hence OK.}$ # Shear Resisted by vertical shear stirrups will be $Vusv = \frac{Vu}{2} = 31.25 \text{ kN}$ For two legged vertical stirrups Asv = $\frac{2*\pi 8^2}{4}$ = 100.53 mm ² S = $\frac{0.87 * fy * Asv * d}{Vusv}$ = $\frac{0.87 \times 415 \times 100.53 \times 500}{31.25 \times 103}$ = 580.74 mm 31.25×103 Maximum spacing is given as 300 mm $0.75d = 0.75 \times 500 = 375 \text{ mm}$ 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
Vusb > $\frac{Vu}{2}$ hence OK. # Shear Resisted by vertical shear stirrups will be1 Vusv = $\frac{Vu}{2}$ = 31.25 kNFor two legged vertical stirrups Asv = $\frac{2*\pi 8^2}{4}$ = 100.53 mm²S = $0.87 * fy * Asv * d$ VusvS = $0.87 * fy * Asv * d$ Vusv $0.87x415x100.53x500$ = 580.74 mm31.25x103Maximum spacing is given as 300 mm $0.75d = 0.75x500=375$ mm1Least value of the above is 8 mm stirrups @ 300 mm c/c1	
# Shear Resisted by vertical shear stirrups will be1 $Vusv = \frac{Vu}{2} = 31.25 \ kN$ For two legged vertical stirrups $Asv = \frac{2*\pi 8^2}{4} = 100.53 \ mm^2$ $S = \frac{0.87 * fy * Asv * d}{Vusv}$ $= \frac{0.87x415x100.53x500}{31.25x103} = 580.74 \ mm^2$ Maximum spacing is given as 300 \ mm^2 $0.75d = 0.75x500=375 \ mm^2$ $Least$ value of the above is 8 \ mm stirrups @ 300 \ mm c/c1	
Vusv = $\frac{Vu}{2}$ = 31.25 kN For two legged vertical stirrups Asv = $\frac{2*\pi 8^2}{4}$ = 100.53 mm ² S = $\frac{0.87 * fy * Asv * d}{Vusv}$ = $\frac{0.87x415x100.53x500}{31.25x103}$ = 580.74 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
For two legged vertical stirrups Asv = $\frac{2*\pi 8^2}{4}$ = 100.53 mm ² S = $\frac{0.87 * fy * Asv * d}{Vusv}$ = $\frac{0.87x415x100.53x500}{31.25x103}$ = 580.74 mm 31.25x103 Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	1
For two legged vertical stirrups Asv = 4 = 100.53 mm ² S = 0.87 * fy * Asv * d Vusv = 0.87x415x100.53x500 = 580.74 mm 31.25x103 Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
Vusv = <u>0.87x415x100.53x500</u> = 580.74 mm 31.25x103 Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
Vusv = <u>0.87x415x100.53x500</u> = 580.74 mm 31.25x103 Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
31.25x103 Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
31.25x103 Maximum spacing is given as 300 mm 0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
0.75d = 0.75x500=375 mm 580.74 mm Least value of the above is 8 mm stirrups @ 300 mm c/c	
580.74 mm1Least value of the above is 8 mm stirrups @ 300 mm c/c	
Least value of the above is 8 mm stirrups @ 300 mm c/c	_
•	1
Alternatively	
, account of y	
Check for minimum stirrups if capable of taking the shear force resisted by O	R
minimum stirrups	
Vusv (min) = 0.4 x b x D = 70 kN >Vusv	
Minimum stirrups are sufficient	
Asv = $\frac{2*\pi*8^2}{4}$ = 100.53 mm ²	
4	

		Sv = $\frac{0.87 * fy * Asv}{0.4 * b} = \frac{0.87 * 415 * 100.53}{0.4 * 350} = 259.25 \approx 250 \text{ mm}$		
		Provide 8mm dia stirrups @250mm ^c / _c	1	
	c)	State the various forms of shear reinforcements.		6M
		i) Vertical Shear Stirrups.		
		$Vus = \frac{0.87 * fy * Asv * d}{Sv}$	2	
		$vus = \frac{sv}{sv}$		
		1) Vus – balance shear		
		2) Fy – Grade of steel/characteristic strength of stirrup		
		3) Asv – Area of shear stirrups with in a distance Sv		
		4) d – effective depth of beam		
		5) Sv – spacing of shear stirrups along the length of members		
		ii) Inclined Shear stirrups	2	
		$Vus = \frac{0.87*fy*Asv*d}{Sv}(Sin \alpha + Cos \alpha)$		
		¹⁾ α – angle between the inclined stirrup and the axis of member not less than 45 ^o		
		iii) Bent up bars.	2	
		Vus = 0.87fy Asb.Sin α		
		1) Asb – area of bentup bar		
		2) Vus - balance shear		
		3) Fy - Grade of steel/characteristic strength of stirrup		
		4) α - angle between the inclined stirrup and the axis of member not less		
		than 45 ^o		
25		Attempt any TWO of the following		12
		Design a one way slab with the following data, span = 3 m, live load = 4		6M
		<i>kN/m2</i> floor finish = 1 <i>kN/m2</i> . Concrete M20 and Fe415 steel. Take M.F. as 1.4.		
		(No check required).		
		Design a one way Lx = 3m		
		$Lx = 3m$ $LL = 4KN / m^2$		
		$FF = 1KN / m^2$		
		$fck = 20N / mm^2$, fy = 415 N/ mm ² ,		
		MF = 1.4		
		Slab Thickness d= Span		
		20 x MF		

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR P a g e 12 | 22 Contact - 9136008228

= <u>3000</u> = 107.14 <u>mm</u>	
20 x 1.4	1
Assuming 10 mm Ø main bars and nominal cover of 20 mm	
[Note: some student may assume 15mm cover]	
$D = d + cover + \emptyset / 2$	
= 107.14 + 20 + 10/2	
= 132.14mm	
Take D = 135mm	
davail = D – cover - \emptyset /2	
135 – 20 – 10/2	
d = 110mm	
Effective span	
le= l + d = 3000 + 110 = 3110mm	
le= 3.11m	
#Calculation of Loads	
$DI = 0.135 \text{ x } 25 = 3.375 \text{ KN/m}^2$	
$LL = 4 \text{ KN/m}^2$	
$FF = 1KN / m^2$	
W = 8.375 KN m ²	
The load is to be considered for one meter 8.375 * 1=8.375	1
Factored Load (wd) = $8.375 \times 1.5 = 12.563 \text{ KN/m}$	
# Factored max BM	1
$Md = wd x le^2 / 8$	
$12 = 62 \times 211^2$	
$Md = \frac{12.583 \times 3.11^{-}}{8} = 15.19 \text{ kN-m}$	
#Check for required depth	1
$d = SQRT(15.19 \times 10^{6}/0.138 \times 20 \times 1000)$	
d = 74.19mm	
davail = 110mm > dreqd -: ok	
Provide D = 135 mm	
davail 110mm	
#Area of main steel and its spacing	
$\begin{bmatrix} 46Md \end{bmatrix}$	
Ast = 0.5 fck/fy $\left 1 - \sqrt{1 - \frac{4.6 Md}{fckbd^2}} \right x bd$	
	1
$=0.5 \times 20/415 \left[1 - \sqrt{1 - \frac{4.6 \times 15.19 \times 10^6}{20 \times 1000 \times 110^2}} \right] \times 1000 \times 110 = 415.18 \text{mm}^2$	
$1 \sqrt{20 \times 1000 x \times 110^2}$	

	Enacing of main rainforcement	Spacing of main rainforment	1	
	Spacing of main reinforcement	Spacing of main reinforcement		
	Assuming 10 mm bar. AØ = ∏ x 10 ² /4 = 78.5mm2	Assuming 8 mm bar A [¢] = ∏ x 8²/4 = 50.26mm²		
	$A \varphi = \int x 10^{-7} 4 = 78.5 \text{mm2}$ Spacing = 1000 x A φ /Ast	$A^{+} = x 8^{-}/4 = 50.26 \text{ mm}^{-}$ = Spacing = 1000AØ/Ast		
	= 1000 x 78.5\415.18	$= 1000 \times 50.26/415.18$		
	= 189.17mm	$= 1000 \times 30.20/413.18$ = 121.06mm		
	=180mm c/c	= 121.00mm = 120 mm c/c		
	· · ·	·		
	Check for spacing = 3d or 300mm	Check for spacing = 3d or 300mm		
	= 330 or 300mm	= 330 or 300mm		
	Provide 10 mm bar at 180mm c/c	Provide 8mm bar at 120mm c/c		
	#Area and spacing of distribution steel			
	$Asd = 0.12/100 \times bD$			
	=0.12/100 x 1000 x 135 = 162mm2		1	
	Spacing 8mm bars $A^{\phi} = 50.26 \text{mm}^2$		•	
	Sd = 1000 x AØ/Astd			
	1000 x 50.26/ 162 = 310mm			
	Check for spacing minimum of			
	1) 5d = 5 x 110 = 550mm			
	2) 450mm			
	3) 310mm			
	Provide distribution steel of 8mm at 31			
b)		l for 6.3 x 4.5 m simply supported on all		6
	the four sides. It has to carry a live load			
	load. Use M25concrete Fe 415 steel.	No checks) Use ax = 0.062 & ay =		
	0.060.			
	Ly = 6.3mm			
	Lx= 4.5m Ly/Lx = 6.3/4.5 = 1.4< 2			
	: Two way slab			
	•	F, to be checked as per the values taken		
	Assume MF = 1.4			
	d= Span/20 x 1.4			
	= 160.71mm			
	Assume clear over of 20mm			
	Assume 10mm diameter of bar			
	$D = d + cover + \frac{\phi}{2}$			
	= 160.71 + 20 +10/2 = 185.71 = 190mm			
	davail 190-20-10/2 = 165mm			
	#Calculation of effective span			

	Asty > Astmain : OK		
	Alternatively	1	
	D= 165 – 8 = 157		
	Asty = 0.5fck/fy [1- $\sqrt{1 - \frac{4.6Md}{fckbd^2}}bd$		
	$= 0.5 \times 25/415 \left[1 - \sqrt{1 - \frac{4.6 \times 17.14 \times 10^6}{25 \times 1000 \times 157^2}} \right] \times 1000 \times 157 = 312.87 \text{ mm}^2$		
	Check for spacing		
	Sx = AØb/Asty = 50.26 x 1000/296.71 = 169.39mm =165mm		
	Spacing should be min of 3d = 495mm, 300, 160 min		
	S = 160mm		
	Provide 8mm at 165mm c/c		
c)	Design a cantilever chajja with following data: Span = 1.50 m, width = 2.0 m,		6M
	1.1. = 1.5 kN/m2. Floor finish = 0.5 kN/m2, support lintel = 230 x 300 mm		
	concrete M20, Fe 415 steel, sketch the c/s of chajja. Showing steel details.		
	Lx = 1.5m		
	$LL = 1.5KN / m^2$		
	$FF = 05KN / m^2$		
	fck = 20N / mm ²		
	fy = 415 N/ mm ²		
	d = span /(7 x MF)		
	Assuming MF = 1.4	1	
	# Estimation of depth	•	
	d= 1500/(7 x 1.4) = 153.06mm		
	Assuming 20mm cover and 10mm bars		
	D = 153.06+20+10/2		
	= 178.06 = 180mm		
	davail = 180 - 20-10/2 = 155mm		
	Effective Span le= l + d/2		
	= 1500+155/2 = 1577.5mm $= 1.58$ m		
	#Load Calculation & BM		
	$DL = 1x1 \times 0.19 \times 25 = 4.75 \text{KN/m}^2$	1	
	$LL = 1.5 KN/m^2$		
	$FF = 0.5KN/m^2$		
	Total Load w= 6.75 KN/m ²		
	Factored Load wd = $6.75 \times 1.5 = 10.13 \text{KN/m}^2$		
	#Factored BM		
	$Md = \frac{wd \times le^2}{2}$		
	2	1	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR P a g e 16 | 22 Contact - 9136008228

	4	
	1	
	1	
$e_{\min} = \frac{1}{500} + \frac{1}{30}$		
3500 450		
$=\frac{1}{500}+\frac{1}{30}$		
= 22 mm		
e _{max} = 0.05 x D		
= 0.05 x 450		
$e_{min} < e_{max} - ok$		
#Main steel Calculation		
Asc = 0.01 Ag	1	
$= 0.01 (450^2)$		
	1	
Use 6mm diameter mild steel reinforcement		
b) Spacing		
Min of the following		
1) D = 450mm		
2) $16 \times \emptyset$ L = $16 \times 20 = 320$ mm		
3) 300mm		
Use 6mm φ links at 300 mm c/c		
		6M
P = 1500 KN		
Factored load = 1500 × 1.5 =2250KN		
fck =25 N/mm ²		
	4	
Note: Students may assume different % of steel, to be checked based on		
I NOTE: STUDENTS, MAY ASSUME OTTERNI, % OT STEEL TO DE CHECKED DASED ON	1	
	$e_{max} = 0.05 \times D$ $= 0.05 \times 450$ $= 22.5 mm$ $e_{min} < e_{max} - 0k$ #Main steel Calculation Asc = 0.01 Ag $= 0.01 (450^{2})$ $= 2025 mm^{2}$ Provide 8 bars of 20 mm diameter #Transverse Steel a) Diameter ØT= 1/4 × ØL or 6mm whichever is greater $= (1/4) 20 \text{ or 6mm}$ $= 5mm \text{ or 6mm}$ Use 6mm diameter mild steel reinforcement b) Spacing	= 420 mm - 0k D should not be less than 400 mm - 0k #Check for minimum eccentrically $e_{min} = \frac{L}{500} + \frac{D}{30}$ $= \frac{3500}{500} + \frac{450}{30}$ $= 22 \text{ mm}$ $e_{max} = 0.05 \times 450$ $= 20.5 \text{ mm}$ $e_{min} < e_{max} - 0\text{k}$ #Main steel Calculation Asc = 0.01 Ag $= 0.01 (450^{2})$ $= 2025 \text{ mm}^{2}$ Provide 8 bars of 20 mm diameter #Transverse Steel a) Diameter ØT= 1/4 x ØL or 6mm whichever is greater = (1/4) 20 or 6mm $= 5 smm or 6mm$ Use 6mm diameter mild steel reinforcement b) Spacing Min of the following 1) D = 450 mm 2) 16 × ØL = 16 × 20 = 320 mm 3) 300 mm Use 6mm ϕ links at 300 mm c/c Design a circular column to carry an axial load of 1500 kN. using MS Lateral ties. Use M25 concrete and Fe415 steel. The unsupported length of column is 3.75 m. P = 1500 KN Factored load = 1500 × 1.5 = 2250 KN fck = 25 N/mm^{2} fy=415N/mm^{2} Lo=3.75 m Assume1 %ofAg. 1

Asc = 0.01 A g Ac = Ag - A S C		
= 0.99 Ag		
Pu = 0.4 fck.Ac + 0.67 fy ASC		
2250x103 = 0. 4 × 25 × 0.99 A g + 0.67 × 415 × 0.01 Ag		
$A g = 177 437.8 \text{ mm}^2$		
#Diameter of column		
4 x 177437.8	1	
$D = \sqrt{\frac{3.14}{3.14}}$		
= 475.43 mm D = 480 mm		
D should not be less than 0.12× L		
$0.12 \times 3750 = 450$ mm -ok D should not be less than 400 mm -ok		
D=480mm		
#Check for min eccentricity		
$e_{min} = Lo/500 + D/30$	1	
= 3750/500 + 480/30		
=23.5mm		
e _{max} = 0.05 x D		
= 0.05 x 480 = 24mm		
emin < emax :- OK		
#Check for slenderness ratio		
L/D = 3750/480 = 7.8 < 12 :- short column		
Asc = $0.01 \times (\pi \times 480^2/4)$	1	
$= 1808.64 \text{ mm}^2$		
Assume 20mm dia of bar		
Provide 6 bars of 20mm		
Transverse steel		
Diameter = $_{\emptyset}t = \frac{1}{4} \times _{\emptyset L} max$ or 6mm whichever is greater		
a) = ¼ x 20 or 6mm	1	
5mm or 6mm		
øt = 6mm		
a) Spacing		
Min of the following		
1) D = 480mm	1	
2) 16 ϕ_L = 16 x 20 = 320mm		
3) 300mm		
Use 6mm ∗ links at 300mm c/c		

c)	Design on R.C. column footing with following data. Size of column = 400 rnm		6M
	x 400 mm. Safe bearing capacity of soil = 200 kN/m2. Load on column =		
	1400 kN. Concrete M20 and steel Fe 415 is used. Calculate depth of footing		
	from B.M. Criteria. No shear check is required.		
	Column = 400mm x 400mm		
	$SBC = 200KN/m^2$		
	P = 1400KN		
	Factored Load = 1400 x 1.5 = 2100KN		
	fck = 20N/mm2		
	fy = 415N/mm ²		
	Ultimate Bearing Capacity = 2 x SBC = 400KN/m ²		
	Size of footing	1	
	Wf = 2100KN	·	
	Af = 1.05 x Wf/SBC		
	$= 1.05 \times 2100/400 = 5.51 \text{m}^2$		
	L = B = $\sqrt{Af} = \sqrt{5.51} = 2.35$ m		
	Adopt footing of size 2.35m x 2.35m		
	#Calculation of Upward soil pressure (q)	1	
	q = Wf/(L x B) = 2100 / (2.35 x 2.35)= 380.27KN/m ²	I	
	# Calculation of Depth from flexure	1	
	Lx = Ly= (2.35-0.4)/2 = 0.975 m		
	$M = q^{*}Lx^{2}/2$		
	Mx= My = 380.27* 0.975*0.975/2 = 180.75 KN m		
	# Check for depth required	1	
	d-reqd = $\sqrt{\left[\frac{M}{qfckb}\right]}$		
	$= \sqrt{\frac{180.75 x 10^6}{0.138 x 20 x 1000}} = 255.91 \text{mm} = 260 \text{mm}$		
	D = 260 + 50 = 310mm	1	
	#Calculation of Steel	-	
	$\mathbf{Astx} = \mathbf{Asty} = 0.5 \text{ fck/fy} \left[1 - \sqrt{1 - \frac{4.6 Md}{f c k b d^2}} \right] * bd$		
	= 0.5 x 20 / 415		
	$\left[1 - \sqrt{1 - \frac{4.6 \times 180.75 \times 10^6}{20 \times 1000 \times 260^2}}\right] \times 1000 \times 260 = 2377.58 \text{ mm}^2$		

Using 20mm bar (A ϕ = 314mm ²)	1	
Spacing = 1000 A*/ Ast		
= 1000 x 314.8/2377.58		
= 132.40mm		
=120mm		
Provide 20mm at 120mm c/c		

